Skip to contents

Creates an outcome with Multinomial distribution with the chosen parameters.

Usage

Multinom(p, data, offset = as.matrix(data)^0, base.class = NULL)

Arguments

p

character: a vector with the name of the linear predictor associated with the probability of each category (except the base one, which is assumed to be the last).

data

vector: Values of the observed data.

offset

vector: The offset at each observation. Must have the same shape as data.

base.class

character or integer: The name or index of the base class. Default is to use the last column of data.

Value

A object of the class dlm_distr

Details

For evaluating the posterior parameters, we use the method proposed in Alves et al. (2024) .

For the details about the implementation see dos Santos et al. (2024) .

References

Mariane Branco Alves, Helio S. Migon, Raíra Marotta, Junior, Silvaneo Vieira dos Santos (2024). “k-parametric Dynamic Generalized Linear Models: a sequential approach via Information Geometry.” 2201.05387.

Junior, Silvaneo Vieira dos Santos, Mariane Branco Alves, Helio S. Migon (2024). “kDGLM: an R package for Bayesian analysis of Dynamic Generialized Linear Models.”

See also

fit_model

Other auxiliary functions for a creating outcomes: Gamma(), Normal(), Poisson(), summary.dlm_distr()

Examples


structure <- (
  polynomial_block(p = 1, order = 2, D = 0.95) +
    harmonic_block(p = 1, period = 12, D = 0.975) +
    noise_block(p = 1, R1 = 0.1) +
    regression_block(p = chickenPox$date >= as.Date("2013-09-01"))
  # Vaccine was introduced in September of 2013
) * 4

outcome <- Multinom(p = structure$pred.names, data = chickenPox[, c(2, 3, 4, 6, 5)])
fitted.data <- fit_model(structure, chickenPox = outcome)
summary(fitted.data)
#> Fitted DGLM with 1 outcomes.
#> 
#> distributions:
#>     chickenPox: Multinomial
#> 
#> Static coeficients (smoothed):
#>                  Estimate Std. Error   t value Pr(>|t|)
#> Var.Reg.1         0.39743    0.25059  1.58601    0.113   
#> Var.Reg.2         0.47441    0.26448  1.79376    0.073   
#> Var.Reg.3         0.48811    0.28497  1.71284    0.087   
#> Var.Reg.4        -0.26900    0.23557 -1.14192    0.253   
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> ---
#> See the coef.fitted_dlm for the coeficients with temporal dynamic.
#> 
#> One-step-ahead prediction
#> Log-likelihood        : -1952.613
#> Interval Score        : 165.55741
#> Mean Abs. Scaled Error:   0.77058
#> ---
plot(fitted.data, plot.pkg = "base")