Prints a report for a fitted_dlm object.
Arguments
- object
A fitted_dlm object.
- t
Integer: The time index for the latent states.
- lag
Integer: The number of steps ahead used for the evaluating the latent states. Use lag<0 for the smoothed distribution, If lag==0 for the filtered distribution and lag=h for the h-step-ahead prediction.
- metric.lag
Integer: The number of steps ahead used for the evaluating the predictions used when calculating metrics. Use metric.lag<0 for the smoothed distribution, If metric.lag==0 for the filtered distribution and metric.lag=h for the h-step-ahead prediction.
- metric.cutoff
Integer: The cutoff time index for the metric calculation. Values before that time will be ignored.
- pred.cred
numeric: The credibility interval to be used for the interval score.
- ...
Extra arguments passed to the coef method.#'
See also
Other auxiliary visualization functions for the fitted_dlm class:
plot.dlm_coef()
,
plot.fitted_dlm()
,
summary.searched_dlm()
Examples
data <- c(AirPassengers)
level <- polynomial_block(rate = 1, order = 2, D = 0.95)
season <- harmonic_block(rate = 1, order = 2, period = 12, D = 0.975)
outcome <- Poisson(lambda = "rate", data)
fitted.data <- fit_model(level, season,
AirPassengers = outcome
)
summary(fitted.data)
#> Fitted DGLM with 1 outcomes.
#>
#> distributions:
#> AirPassengers: Poisson
#>
#> ---
#> No static coeficients.
#> ---
#> See the coef.fitted_dlm for the coeficients with temporal dynamic.
#>
#> One-step-ahead prediction
#> Log-likelihood : -580.2514
#> Interval Score : 129.48462
#> Mean Abs. Scaled Error: 0.47013
#> ---