Defines the prior of a structural block as a Conditional Autoregressive (CAR) prior.
Arguments
- block
dlm_block object: The structural block.
- adj.matrix
matrix: The adjacency matrix.
- scale
numeric: The tau parameter for the CAR model (see references).
- rho
numeric: The rho parameter for the CAR model (see references).
- var.index
integer: The index of the variables from which to set the prior.
Details
The filtering algorithm used in this package requires a proper prior for the latent space. As such, this implementation of the CAR prior imposes a zero-sum constraint in the regional effects. The discount factor must be the same for all variables whose prior is being modified.
For a revision of the CAR prior, see Schmidt and Nobre (2018) .
For the details about the implementation see dos Santos et al. (2024) .
References
Junior,
Silvaneo
Vieira dos Santos, Mariane
Branco Alves, Helio
S. Migon (2024).
“kDGLM: an R package for Bayesian analysis of Dynamic Generialized Linear Models.”
Alexandra
M. Schmidt, Widemberg
S. Nobre (2018).
“Conditional Autoregressive (CAR) Model.”
In Wiley StatsRef: Statistics Reference Online, chapter Conditional Autoregressive (CAR) Model, 1-11.
John Wiley & Sons, Ltd.
ISBN 9781118445112, doi:10.1002/9781118445112.stat08048
, https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat08048, https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat08048.
See also
Auxiliary functions for creating structural blocks polynomial_block
, regression_block
, harmonic_block
, TF_block
.
Other auxiliary functions for defining priors.:
joint_prior()
,
zero_sum_prior()
Examples
# Creating an arbitrary adjacency matrix
adj.matrix <- matrix(
c(
0, 1, 1, 0, 0,
1, 0, 1, 0, 0,
1, 1, 0, 0, 0,
0, 0, 0, 0, 1,
0, 0, 0, 1, 0
),
5, 5,
byrow = TRUE
)
polynomial_block(mu = 1, D = 0.95) |>
block_mult(5) |>
CAR_prior(scale = 9, rho = 1, adj.matrix = adj.matrix)
#> Mixed DLM block.
#> latent states:
#> Var.Poly.1: Level (1 variable(s))
#> Var.Poly.2: Level (1 variable(s))
#> Var.Poly.3: Level (1 variable(s))
#> Var.Poly.4: Level (1 variable(s))
#> Var.Poly.5: Level (1 variable(s))
#>
#> Linear predictors:
#> mu.1
#> mu.2
#> mu.3
#> mu.4
#> mu.5
#>
#> Status: defined
#> Serie length: 1
#> Interventions at:
#> Number of latent states: 5
#> Number of linear predictors: 5