Defines the joint prior of a structural block.
Usage
joint_prior(
block,
var.index = 1:block$n,
a1 = block$a1[var.index],
R1 = block$R1[var.index, var.index]
)
Arguments
- block
dlm_block object: The structural block.
- var.index
Integer: The index of the variables from which to set the prior.
- a1
Numeric: The prior mean.
- R1
Matrix: The prior covariance matrix.
Details
The discount factor must be the same for all variables whose prior is being modified. For the details about the implementation see dos Santos et al. (2024) .
References
Junior, Silvaneo Vieira dos Santos, Mariane Branco Alves, Helio S. Migon (2024). “kDGLM: an R package for Bayesian analysis of Dynamic Generialized Linear Models.”
See also
Other auxiliary functions for defining priors.:
CAR_prior()
,
zero_sum_prior()
Examples
polynomial_block(mu = 1, D = 0.95) |>
block_mult(5) |>
joint_prior(var.index = 1:2, R1 = matrix(c(1, 0.5, 0.5, 1), 2, 2))
#> Mixed DLM block.
#> latent states:
#> Var.Poly.1: Level (1 variable(s))
#> Var.Poly.2: Level (1 variable(s))
#> Var.Poly.3: Level (1 variable(s))
#> Var.Poly.4: Level (1 variable(s))
#> Var.Poly.5: Level (1 variable(s))
#>
#> Linear predictors:
#> mu.1
#> mu.2
#> mu.3
#> mu.4
#> mu.5
#>
#> Status: defined
#> Serie length: 1
#> Interventions at:
#> Number of latent states: 5
#> Number of linear predictors: 5